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Motivation: Routine measurements of the depth of the daytime
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refractive index. The radars are particularly
sensitive to Bragg scattering. The height of the
| " boundary layer can be determined by the
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The top edge of the CBL can be objectively identified in the lidar
data by applying Haar wavelets to the columns of backscatter
data in the images resulting from vertical scans.
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The CBL depth is determined from a Dr. Laura Bianco (NOAA) developed algorithms and applies them to objectively identify the | Right: One RHIscan from o T Wil | of REAL RHI scans
distinct change in the vertical gradient of CBL height from profiler data (above). These data have been used to begin developing :fﬁf:iiﬁ‘ﬁ;Eﬁiﬂaj'al 0. O L o e v SIS P (left) using the Haar
temperature.  While this is a robust climatologies of CBL height in the Central Valley. Below, triangles show mean CBL height in its top edge as determined 0 1 2 3 4 5 wavelet algorithm.
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soundings per day. virtual potential temperature is shown in color (Bianco et al. 2011). .
] ] CCO (Chico, CA) 25 Timeline for Research: We plan to operate the REAL during the summer and autumn of 2012. Data processing and comparison of
BEIOV\_/' Example Radloéonde 2 radar and lidar CBL heights will then take place and a thesis and journal article are to be completed by summer 2013.
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